UHF Narrow band radio transceiver STD-302Z 434MHz # **Operation Guide** **Version 1.1 (Mar. 2019)** - This product requires electrical and radio knowledge for setup and operation. - To ensure proper and safe operation, please read this operation guide thoroughly prior to use. - Please keep this operation guide for future reference. ## **CIRCUIT DESIGN, INC.,** 7557-1 Hotaka, Azumino Nagano 399-8303 JAPAN Tel: + +81-(0)263-82-1024 Fax: + +81-(0)263-82-1016 e-mail: info@circuitdesign.jp http://www.circuitdesign.jp # **CONTENTS** | GENERAL DESCRIPTION & FEATURES | 3 | |--|----| | SPECIFICATIONS STD-302Z 434 MHz | 4 | | PIN DESCRIPTION | 6 | | BLOCK DIAGRAM | 8 | | DIMENSIONS | 9 | | PLL IC CONTROL | 10 | | PLL IC control | 10 | | How to calculate the setting values for the PLL register | 11 | | Method of serial data input to the PLL | 12 | | TIMING CHART | 13 | | PLL FREQUENCY SETTING REFERENCE | 15 | | TEST DATA | 17 | | REGULATORY COMPLIANCE INFORMATION | 18 | | CAUTIONS & WARNINGS | 19 | ### **GENERAL DESCRIPTION & FEATURES** ## **General Description** The UHF FM narrow band semi-duplex radio data module STD-302Z is an RED and RoHS compliant, high performance transceiver designed for use in industrial applications requiring long range, high performance and reliability. All high frequency circuits are enclosed inside a robust housing to provide superior resistance against shock and vibration. The narrow band technique enables high interference rejection and concurrent operation with multiple modules. STD-302Z, a narrowband module with 25 kHz channel steps, achieves high TX/RX switching speed, making it an ideal RF unit for inclusion in feedback systems. #### **Features** - 10 mW RF power, 3.0 V operation - Programmable RF channel - Fast TX/RX switching time - High sensitivity -119 dBm - > Excellent mechanical durability, high vibration & shock resistance - > RED (EN 300 220) / RoHS compliant - Receiver category 1 (EN 300 220) ## **Applications** Telemetry Water level monitor for rivers, dams, etc. Monitoring systems for environmental data such as temperature, humidity, etc. Transmission of measurement data (pressure, rpm, current, etc) to PC Security alarm monitoring Telecontrol Industrial remote control systems Remote control systems for factory automation machines Control of various driving motors Data transmission RS232/RS485 serial data transmission ## **SPECIFICATIONS** ## STD-302Z 434 MHz All ratings at 25 +/-10 °C unless otherwise noted #### **General characteristics** | Item | Units | MIN | TYP | MAX | Remarks | |-----------------------------|-------|----------------|-----------------|-------|-----------------------| | Applicable standard | | Е | EN 300 220 |) | | | Communication method | | Simp | lex, Half-d | uplex | | | Emission class | | | F1D | | | | Operating frequency range | MHz | 433.075 | 433.075 434.775 | | | | Operation temperature range | °C | -20 | -20 60 | | No dew condensation | | Storage temperature range | °C | -30 | | 75 | No dew condensation | | Frequency drift / year | ppm | -1 | | 1 | TX freq., RX Lo freq. | | Initial frequency tolerance | ppm | -1 | | 1 | TX freq., RX Lo freq. | | Dimensions | mm | 30 x 50 x 9 mm | | nm | Not including antenna | | Weight | g | | 25 g | | | ## **Electrical specification < Common>** | Item | | MIN | TYP | MAX | Remarks | |-----------------------------------|-----|------|------------|------|------------------------------| | Oscillation type | | PLL | controlled | VCO | | | Frequency stability (-20 to 60°C) | ppm | -3.5 | | 3.5 | Reference frequency at 25 °C | | TX/RX switching time | ms | | 15 | 20 | DI/DO | | Channel step | kHz | | 25 | | | | Data rate | bps | 2400 | | 9600 | DO/DI | | Max. pulse width | ms | | | 15 | DO/DI | | Min. pulse width | us | 100 | | | DO/DI | | Data polarity | | | Positive | | DO/DI | | PLL reference frequency | MHz | | 21.25 | | TCXO | | PLL response | ms | | 30 | 60 | from PLL setting to LD out | | Antenna impedance | Ω | | 50 | | Nominal | | Operating voltage | V | 3.0 | | 5.5 | | | TX consumption current | mΑ | | 44 | 48 | Vcc = 3.0 V | | RX consumption current | mΑ | | 28 | 32 | Vcc = 3.0 V | ## **Transmitter part** | Item | | MIN | TYP | MAX | Remarks | |---------------------------------|----------|------|------|------|---------------------------------------| | RF output power ^{*1} | mW | | 10 | | 50Ω conducted | | Deviation | kHz | 2.35 | 2.75 | 3.15 | PN9 9600 bps | | DI input level | V | 0 | | 5.5 | L= GND, H = 3 V- Vcc | | Residual FM noise | kHz | | 0.17 | | DI=L, LPF=20 kHz | | | | | | -54 | 47-74, 87.5-118, 174-230, 470-790 MHz | | Spurious emission ^{*1} | dBm | | | -36 | Other frequencies below 1000 MHz | | | | | | -30 | Frequencies above 1000 MHz | | Adjacent CH power*1 | dBm | | | -37 | PN9 9600 bps CH25kHz/BW17.5kHz | | Alternate adjacent CH power*1 | dBm | | | -40 | PN9 9600 bps CH50kHz/BW17.5kHz | | Occupied bandwidth*1 | dBm | | | 16 | PN9 9600 bps | #### Receiver part | Item | | MIN | TYP | MAX | Remarks | |--|-------|--------|------------|--------|-------------------------------------| | Receiver type | | Double | superhete | rodyne | | | Receiver category | | | Category 1 | | EN 300 220 | | 1st IF frequency | MHz | | 21.7 | | | | 2nd IF frequency | kHz | | 450 | | | | Maximum input level | dBm | | | 10 | | | BER (0 error/2556 bits) | dBm | -107 | -110 | | At 434.05MHz PN 9 9600bps | | BER (1 % error) | dBm | | -116 | | At 434.05MHz PN 9 9600bps | | Sensitivity 12dB/ SINAD | dBm | | -119 | | fm1 k/ dev 2.75 kHz CCITT | | Blocking ^{*1} | dBm | -20 | | | | | Spurious response rejection ¹ | dBm | -44 | | | 1 st Mix, 2nd Mix | | Adjacent CH selectivity *1 | dBm | -50 | | | +/- 25 kHz | | Adjacent CH saturation*1 | dBm | -20 | | | +/- 25 kHz | | DO output level | V | 0 | | 2.8 | L = GND H = 2.8 V | | DCCI riging time | ms | | 30 | 50 | CH shift of 25 kHz (from PLL setup) | | RSSI rising time | | | 50 | 70 | When power ON (from PLL setup) | | Time until valid Data-out *2 | | | 50 | 100 | CH shift of 25 kHz (from PLL setup) | | Time until valid Data-out | ms | | 70 | 120 | When power ON (from PLL setup) | | Spurious radiation*1 | dBm | | | -57 | Below 1000 MHz | | Spurious radiation | UDIII | | | -47 | Above 1000 MHz | | RSSI | mV | 190 | 240 | 290 | With -113 dBm at 434.000MHz | Specifications are subject to change without prior notice #### Notice - The time required until a stable DO is established may get longer due to the possible frequency drift caused by operation environment changes, especially when switching from TX to RX, from RX to TX and changing channels. Please make sure to optimize the timing. The recommended preamble is more than 20 ms. - Antenna connection is designed as pin connection. - RF output power, sensitivity, spurious emission and spurious radiation levels may vary with the trace used between the RF pin and the coaxial connection. Please make sure to verify those parameters before use. - The feet of the shield case should be soldered to a wide GND pattern to avoid any change in characteristics. #### Notes about the specification values - *1 The measurement procedures are according to the ETSI EN 300 220. - *2 The valid DO is determined at the point where Bit Error Rate meter starts detecting the signal of 9600bps, 1010repeated signal. All specifications are specified based on the data measured in a shield room using the PLL setting controller board prepared by Circuit Design. # **PIN DESCRIPTION** | Pin name | I/O | Description | Equivalent circuit | |----------|-----|--|-------------------------| | RF | I/O | RF input terminal
Antenna impedance nominal 50 Ω | RX D L GND | | GND | I | GROUND terminal The GND pins and the feet of the shield case should be connected to a wide GND plane. | | | VCC | I | Power supply terminal DC 3.0 to 5.5 V | 2.8V VCC C C REG R C C | | TXSEL | I | TX select terminal GND = TXSEL active To enable the transmitter circuits, connect TXSEL to GND and RXSEL to OPEN or 2.8 V. | TX2.8V 51k 473 39k 2.8V | | RXSEL | I | RX select terminal GND= RXSEL active To enable the receiver circuits, connect RXSEL to GND and TXSEL to OPEN or 2.8 V. | 470 RXSEL 20k 2.8V 2.8V | | AFOUT | 0 | Analogue output terminal There is a DC offset of approx. 1 V. Refer to the specification table for amplitude level. | RX2.8V 470 AFOUT GND | | CLK | I | Clock terminal for PLL data setting input Interface voltage H = 2.8 V, L = 0 V | DHL612 Zk CLK | | DATA | I | PLL data setting input terminal Interface voltage H = 2.8 V, L = 0 V | DHL612 Zk DATA | | LE | I | Load enable signal input terminal for PLL data setting input Interface voltage H = 2.8 V, L = 0 V | DHL 512 | |------|---|---|---------------------------------------| | LD | 0 | PLL lock/unlock indicator terminal Lock = H (2.8 V), Unlock = L (0 V) | 2 . 8V
10k
2k
LD
C
GND | | RSSI | 0 | Received Signal Strength Indicator terminal | IF-1C 2k RSS1 | | DO | 0 | Data output terminal
Interface voltage: H=2.8V, L=0V | TOK 2k DO C GND | | DI | I | Data input terminal Interface voltage: H=2.8V to Vcc, L=0V Input data pulse width Min.100 μs Max. 15 ms | 2k DI | ## BLOCK DIAGRAM <STD-302Z 434MHz> OG_STD-302Z-434M_v11e 8 Circuit Design, Inc. ## **DIMENSIONS** ## PLL IC CONTROL #### PLL IC control STD-302Z is equipped with an internal PLL frequency synthesizer as shown in Figure 1. The operation of the PLL circuit enables the VCO to oscillate at a stable frequency. Transmission frequency is set externally by the controlling IC. STD-302Z has control terminals (CLK, LE, DATA) for the PLL IC and the setting data is sent to the internal register serially via the data line. Also STD-302Z has a Lock Detect (LD) terminal that shows the lock status of the frequency. These signal lines are connected directly to the PLL IC through a $2 \text{ k}\Omega$ resistor. The interface voltage of STD-302Z is 2.8 V, so the control voltage must be the same. STD-302Z comes equipped with a Intochips DHL612 PLL IC. Please refer to the manual of the PLL IC. The following is a supplementary description related to operation with STD-302Z. In this description, the same names and terminology as in the PLL IC manual are used, so please read the manual beforehand. #### How to calculate the setting values for the PLL register The PLL IC manual shows that the PLL frequency setting value is obtained with the following equation. $f_{VCO} = \{(M \times P) + S\} \times f_{REF} / R (S < P)$ -- Equation 1 f_{VCO}: Output frequency of external VCO M: Preset divide ratio of the prescaler (64 or 128) P: Preset divide ratio of binary 11-bit programmable counter (3 to 2,047) S: Preset divide ratio of binary 7-bit swallow counter (0 to 127) f_{REF}: Output frequency of the reference frequency oscillator R: Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383) With STD-302Z, there is an offset frequency (f_{OFFSET}) 21.7 MHz for the transmission RF channel frequency f_{CH} . Therefore the expected value of the frequency generated at VCO (f_{EXPECT}) is as below. ``` f_{VCO} = f_{EXPECT} = f_{CH} - f_{OFFSET} Equation 2 ``` The PLL internal circuit compares the phase to the oscillation frequency $f_{VCO.}$ This phase comparison frequency (f_{COMP}) must be decided. f_{COMP} is made by dividing the frequency input to the PLL from the reference frequency oscillator by reference counter R. STD-302Z uses 21.25 MHz for the reference clock $f_{REF.}$ f_{COMP} is one of 6.25 kHz, 12.5 kHz or 25 kHz. ``` The above equation 1 results in the following with n = M \times P + S, where "n" is the number for division. ``` $f_{VCO}=n^*f_{COMP}$ ---- Equation 3 $n = f_{VCO}/f_{COMP}$ ---- Equation 4 note: $f_{COMP} = f_{REF}/R$ Also, this PLL IC operates with the following R, P, S and M relational expressions. ``` R=f_{REF}/f_{COMP} ---- Equation 5 P=INT (n / M) ---- Equation 6 S=n-(M \times P) ---- Equation 7 INT: integer portion of a division. ``` As an example, the setting value of RF channel frequency f_{CH} 433.075 MHz can be calculated as below. The constant values depend on the electronic circuits of STD-302Z. Conditions: Channel center frequency: $f_{CH} = 433.075 \text{ MHz}$ Constant: Offset frequency: f_{OFFSET}=21.7 M Constant: Reference frequency: f_{REF}=21.25 MHz Set 25 kHz for Phase comparison frequency and 64 for Prescaler value M The frequency of VCO will be $f_{VCO} = f_{EXPECT} = f_{CH} - f_{OFFSET} = 433.075-21.7 = 411.375 \text{ MHz}$ Dividing value "n" is derived from Equation 4 $n = f_{VCO} / f_{COMP} = 411.375MHz/25kHz = 16455$ Value "R" of the reference counter is derived from Equation 5. $R = f_{REF}/f_{COMP} = 21.25MHz/25kHz = 850$ Value "N" of the programmable counter is derived from Equation 6. P = INT (n/M) = INT(16455/64) = 257 Value "A" of the swallow counter is derived from Equation 7. $S = n - (M \times P) = 16455-64 \times 257 = 7$ The frequency of STD-302Z is locked at a center frequency f_{CH} by inputting the PLL setting values P, S and R obtained with the above equations as serial data. The above calculations are the same for the other frequencies. Excel sheets that contain automatic calculations for the above equations can be found on our web site (www.circuitdesign.jp). The result of the calculations is arranged as a table in the CPU ROM. The table is read by the channel change routine each time the channel is changed, and the data is sent to the PLL. ## Method of serial data input to the PLL After the RF channel table plan is decided, the data needs to be allocated to the ROM table and read from there or calculated with the software. Together with this setting data, operation bits that decide operation of the PLL must be sent to the PLL. The operation bits for setting the PLL are as follows. These values are placed at the head of the reference counter value and are sent to the PLL. 1. CS: Charge pump current select bit CS = 0 +/-1.5 mA select VCO is optimized to +/-1.5 mA 2. LDS: LD/fout output setting bit LDS = 0 LD select Hardware is set to LD output 3. FC: Phase control bit for the phase comparator FC = 1 Hardware operates at this phase The PLL IC, which operates as shown in the block diagram in the manual, shifts the data to the 19-bit shift register and then transfers it to the respective latch (counter, register) by judging the CNT control bit value input at the end. - 1. CLK [Clock]: Data is shifted into the shift register on the rising edge of this clock. - 2. LE [Load Enable]: Data in the 19-bit shift register is transferred to respective latches on the rising edge of the clock. The data is transferred to a latch according to the control bit CNT value. - 3. Data [Serial Data]: You can perform either reference counter setup or programmable counter setup first. #### **TIMING CHART** Control timing in a typical application is shown in Figure 3. Initial setting of the port connected to the radio module is performed when power is supplied by the CPU and reset is completed. MOS-FET for supply voltage control of the radio module, RXSEL and TXSEL are set to inactive to avoid unwanted emissions. The power supply of the radio module is then turned on. When the radio module is turned on, the PLL internal resistor is not yet set and the peripheral VCO circuit is unstable. Therefore data transmission and reception is possible 40 ms after the setting data is sent to the PLL at the first change of channel, however from the second change of channel, the circuit stabilizes within 20 ms and is able to handle the data. Changing channels must be carried out in the receive mode. If switching is performed in transmission mode, unwanted emission occurs. If the module is switched to the receive mode when operating in the same channel, (a new PLL setting is not necessary) it can receive data within 5 ms of switching^{*1}. For data transmission, if the RF channel to be used for transmission is set while still in receiving mode, data can be sent at 5 ms after the radio module is switched from reception to transmission^{*2}. Check that the Lock Detect signal is "high" 20 ms after the channel is changed. In some cases the Lock Detect signal becomes unstable before the lock is correctly detected, so it is necessary to note if processing of the signal is interrupted. It is recommended to observe the actual waveform before writing the process program. #### Remark For details about PLL control and the sample programs, see our technical document 'STD-302Z interface method' ^{*1} DC offset may occur due to frequency drift caused by ambient temperature change. Under conditions below - 10 °C, 10 to 20 ms delay of DO output is estimated. The customer is requested to verify operation at low temperature and optimize the timing. ^{*2} Sending '10101.....' preamble just after switching to transmission mode enables smoother operation of the binarization circuit of the receiver. For 9600 bps, a preamble of '11001100' is effective. Figure 3: Timing diagram for STD-302 - #:1 Reset control CPU - #:2 Initialize the port connected to the module. - #:3 Supply power to the module after initializing CPU. - #:4 RFchannel change must be performed in receiving mode. - #:5 40 ms later, the receiver can receive the data after changing the channel... - #:6 10 to 20 ms later, the receiver can receive the data after changing the channel. - #.7 5 ms later, the data can be received if the RF channel is not changed. ## PLL FREQUENCY SETTING DATA REFERENCE 434 MHz ISM band (433.050 - 434.790 MHz) | Parameter name | Value | |---|----------| | Phase Comparing Frequency F _{COMP} [kHz] | 25 | | Start Channel Frequency F _{CH} [MHz] | 433.0750 | | Channel Step Frequency [kHz] | 25 | | Number of Channel | 69 | | Prescaler M | 64 | | Parameter name | Value | |--|-------| | Reference Frequency F _{REF} [MHz] | 21.25 | | Offset Frequency FOFFSET [MHz] | 21.7 | | Parameter name | Value | |-----------------------------------|-------| | Reference Counter R | 850 | | Programmable Counter P Min. Value | 257 | | Programmable Counter P Max. Value | 258 | | Swallow Counter S Min. Value | 0 | | Swallow Counter S Max. Value | 63 | | No. | Channel
Frequency F _{CH} | Expect Frequency FEXPECT (MHz) | Lock
Frequency
F _{VCO}
(MHz) | Number of Division n | Programable
Counter
P | Swallow Counter | |-----|--------------------------------------|--------------------------------|--|----------------------|-----------------------------|-----------------| | 0 | 433.0750 | 411.3750 | 411.3750 | 16455 | 257 | 7 | | 1 | 433.1000 | 411.4000 | 411.4000 | 16456 | 257 | 8 | | 2 | 433.1250 | 411.4250 | 411.4250 | 16457 | 257 | 9 | | 3 | 433.1500 | 411.4500 | 411.4500 | 16458 | 257 | 10 | | 4 | 433.1750 | 411.4750 | 411.4750 | 16459 | 257 | 11 | | 5 | 433.2000 | 411.5000 | 411.5000 | 16460 | 257 | 12 | | 6 | 433.2250 | 411.5250 | 411.5250 | 16461 | 257 | 13 | | 7 | 433.2500 | 411.5500 | 411.5500 | 16462 | 257 | 14 | | 8 | 433.2750 | 411.5750 | 411.5750 | 16463 | 257 | 15 | | 9 | 433.3000 | 411.6000 | 411.6000 | 16464 | 257 | 16 | | 10 | 433.3250 | 411.6250 | 411.6250 | 16465 | 257 | 17 | | 11 | 433.3500 | 411.6500 | 411.6500 | 16466 | 257 | 18 | | 12 | 433.3750 | 411.6750 | 411.6750 | 16467 | 257 | 19 | | 13 | 433.4000 | 411.7000 | 411.7000 | 16468 | 257 | 20 | | 14 | 433.4250 | 411.7250 | 411.7250 | 16469 | 257 | 21 | | 15 | 433.4500 | 411.7500 | 411.7500 | 16470 | 257 | 22 | | 16 | 433.4750 | 411.7750 | 411.7750 | 16471 | 257 | 23 | | 17 | 433.5000 | 411.8000 | 411.8000 | 16472 | 257 | 24 | | 18 | 433.5250 | 411.8250 | 411.8250 | 16473 | 257 | 25 | | 19 | 433.5500 | 411.8500 | 411.8500 | 16474 | 257 | 26 | | 20 | 433.5750 | 411.8750 | 411.8750 | 16475 | 257 | 27 | | 21 | 433.6000 | 411.9000 | 411.9000 | 16476 | 257 | 28 | | 22 | 433.6250 | 411.9250 | 411.9250 | 16477 | 257 | 29 | | 23 | 433.6500 | 411.9500 | 411.9500 | 16478 | 257 | 30 | | 24 | 433.6750 | 411.9750 | 411.9750 | 16479 | 257 | 31 | | 25 | 433.7000 | 412.0000 | 412.0000 | 16480 | 257 | 32 | | 26 | 433.7250 | 412.0250 | 412.0250 | 16481 | 257 | 33 | | 27 | 433.7500 | 412.0500 | 412.0500 | 16482 | 257 | 34 | | 28 | 433.7750 | 412.0750 | 412.0750 | 16483 | 257 | 35 | | 29 | 433.8000 | 412.1000 | 412.1000 | 16484 | 257 | 36 | | 30 | 433.8250 | 412.1250 | 412.1250 | 16485 | 257 | 37 | | 31 | 433.8500 | 412.1500 | 412.1500 | 16486 | 257 | 38 | | 32 | 433.8750 | 412.1750 | 412.1750 | 16487 | 257 | 39 | | 33 | 433.9000 | 412.2000 | 412.2000 | 16488 | 257 | 40 | |----|----------|----------|----------|-------|-----|----| | 34 | 433.9250 | 412.2250 | 412.2250 | 16489 | 257 | 41 | | 35 | 433.9500 | 412.2500 | 412.2500 | 16490 | 257 | 42 | | 36 | 433.9750 | 412.2750 | 412.2750 | 16491 | 257 | 43 | | 37 | 434.0000 | 412.3000 | 412.3000 | 16492 | 257 | 44 | | 38 | 434.0250 | 412.3250 | 412.3250 | 16493 | 257 | 45 | | 39 | 434.0500 | 412.3500 | 412.3500 | 16494 | 257 | 46 | | 40 | 434.0750 | 412.3750 | 412.3750 | 16495 | 257 | 47 | | 41 | 434.1000 | 412.4000 | 412.4000 | 16496 | 257 | 48 | | 42 | 434.1250 | 412.4250 | 412.4250 | 16497 | 257 | 49 | | 43 | 434.1500 | 412.4500 | 412.4500 | 16498 | 257 | 50 | | 44 | 434.1750 | 412.4750 | 412.4750 | 16499 | 257 | 51 | | 45 | 434.2000 | 412.5000 | 412.5000 | 16500 | 257 | 52 | | 46 | 434.2250 | 412.5250 | 412.5250 | 16501 | 257 | 53 | | 47 | 434.2500 | 412.5500 | 412.5500 | 16502 | 257 | 54 | | 48 | 434.2750 | 412.5750 | 412.5750 | 16503 | 257 | 55 | | 49 | 434.3000 | 412.6000 | 412.6000 | 16504 | 257 | 56 | | 50 | 434.3250 | 412.6250 | 412.6250 | 16505 | 257 | 57 | | 51 | 434.3500 | 412.6500 | 412.6500 | 16506 | 257 | 58 | | 52 | 434.3750 | 412.6750 | 412.6750 | 16507 | 257 | 59 | | 53 | 434.4000 | 412.7000 | 412.7000 | 16508 | 257 | 60 | | 54 | 434.4250 | 412.7250 | 412.7250 | 16509 | 257 | 61 | | 55 | 434.4500 | 412.7500 | 412.7500 | 16510 | 257 | 62 | | 56 | 434.4750 | 412.7750 | 412.7750 | 16511 | 257 | 63 | | 57 | 434.5000 | 412.8000 | 412.8000 | 16512 | 258 | 0 | | 58 | 434.5250 | 412.8250 | 412.8250 | 16513 | 258 | 1 | | 59 | 434.5500 | 412.8500 | 412.8500 | 16514 | 258 | 2 | | 60 | 434.5750 | 412.8750 | 412.8750 | 16515 | 258 | 3 | | 61 | 434.6000 | 412.9000 | 412.9000 | 16516 | 258 | 4 | | 62 | 434.6250 | 412.9250 | 412.9250 | 16517 | 258 | 5 | | 63 | 434.6500 | 412.9500 | 412.9500 | 16518 | 258 | 6 | | 64 | 434.6750 | 412.9750 | 412.9750 | 16519 | 258 | 7 | | 65 | 434.7000 | 413.0000 | 413.0000 | 16520 | 258 | 8 | | 66 | 434.7250 | 413.0250 | 413.0250 | 16521 | 258 | 9 | | 67 | 434.7500 | 413.0500 | 413.0500 | 16522 | 258 | 10 | | 68 | 434.7750 | 413.0750 | 413.0750 | 16523 | 258 | 11 | ## **TEST DATA** RSSI output level characteristic Measurement frequency: 434MHz / Modulation: unmodulated 25°C +/- 5°C | Signal level | RSSI [mV] | | |--|--|--| | [dBm] | (Typ.) | | | -130 | 124 | | | -120 | 192 | | | -110 | 261 | | | -100 | 329 | | | -90 | 398 | | | -80 | 466 | | | -70 | 535 | | | -60 | 603 | | | -50 | 625 | | | -40 | 627 | | | -30 | 627 | | | -20 | 627 | | | -10 | 627 | | | 0 | 627 | | | -60
-50
-40
-30
-20
-10 | 603
625
627
627
627
627 | | Measurement is done with the PLL setting control board prepared by Circuit Design. # Regulatory compliance information #### **Declaration of Conformity** Hereby, Circuit Design, Inc. declares that the STD-302Z is in compliance with RE Directive (2014/53/EU). The full text of the EU Declaration of Conformity is available at www.circuitdesign.jp. #### Cautions related to regulatory compliance when embedding the STD-302Z #### 1. Duty cycle The STD-302Z is designed to be used in the EU wide harmonised frequency bands for short range devices. The STD-302Z continuously emits carrier signals when power is supplied. The user must design the final product to meet the relevant duty cycle requirement (For more detais, refer to the EN300 220). #### 2. Antenna The STD-302Z is supplied without a dedicated antenna. The conformity assessment of the STD-302Z was performed using Circuit Design's standard antenna ANT-LEA-01 (1/4 lambda lead antenna), so we recommend using the ANT-LEA-01 antenna or an antenna with equivalent characteristics (2.14 dBi or less). For details about our standard antenna, refer to www.circuitdesign.jp or contact us. If you use an antenna other than the recommended antenna, further radio conformity assessment may be required. #### 3. Supply voltage The STD-302Z should be used within the specified voltage range (3.0 V to 5.5 V). #### 4. Enclosure To fulfill the requirements of EMC and safety requirements, the STD-302Z should be mounted on the circuit board of the final product and must be enclosed in the case of the final product. No surface of the STD-302Z should be exposed. #### Conformity assessment of the final product The manufacturer of the final system needs to conduct full EMC testing in the final configuration and also ensure the final product fulfills the health and safety requirements and is also responsible for the conformity assessment procedures of the final product in accordance with the RE Directive. ## Important notice - Customers are advised to consult with Circuit Design local distributors before ordering (for distributor information, see www.circuitdesign.jp) - Circuit Design believes the provided information is accurate and reliable. However, Circuit Design reserves the right to make changes to this product without notice. - Circuit Design products are neither designed nor intended for use in life support applications where malfunction can reasonably be expected to result in significant personal injury to the user. Any use of Circuit Design products in such safety-critical applications is understood to be fully at the risk of the customer and the customer must fully indemnify Circuit Design, Inc for any damages resulting from any improper use. - As the radio module communicates using electronic radio waves, there are cases where transmission will be temporarily cut off due to the surrounding environment and method of usage. The manufacturer is exempt from all responsibility relating to resulting harm to personnel or equipment and other secondary damage. - The manufacturer is exempt from all responsibility relating to secondary damage resulting from the operation, performance and reliability of equipment connected to the radio module. #### Copyright • All rights in this operation guide are owned by Circuit Design, Inc. No part of this document may be copied or distributed in part or in whole without the prior written consent of Circuit Design, Inc. ## **Cautions** - As the radio module communicates using electronic radio waves, there are cases where transmission will be temporarily cut off due to the surrounding environment and method of usage. The manufacturer is exempt from all responsibility relating to resulting harm to personnel or equipment and other secondary damage. - Do not use the equipment within the vicinity of devices that may malfunction as a result of electronic radio waves from the radio module. - The manufacturer is exempt from all responsibility relating to secondary damage resulting from the operation, performance and reliability of equipment connected to the radio module. - Communication performance will be affected by the surrounding environment, so communication tests should be carried out before actual use. - Ensure that the power supply for the radio module is within the specified rating. Short circuits and reverse connections may result in overheating and damage and must be avoided at all costs. - Ensure that the power supply has been switched off before attempting any wiring work. - The case is connected to the GND terminal of the internal circuit, so do not make contact between the '+' side of the power supply terminal and the case. - When batteries are used as the power source, avoid short circuits, recharging, dismantling, and pressure. Failure to observe this caution may result in the outbreak of fire, overheating and damage to the equipment. Remove the batteries when the equipment is not to be used for a long period of time. Failure to observe this caution may result in battery leaks and damage to the equipment. - Do not use this equipment in vehicles with the windows closed, in locations where it is subject to direct sunlight, or in locations with extremely high humidity. - The radio module is neither waterproof nor splash proof. Ensure that it is not splashed with soot or water. Do not use the equipment if water or other foreign matter has entered the case. - Do not drop the radio module or otherwise subject it to strong shocks. - Do not subject the equipment to condensation (including moving it from cold locations to locations with a significant increase in temperature.) - Do not use the equipment in locations where it is likely to be affected by acid, alkalis, organic agents or corrosive gas. - Do not bend or break the antenna. Metallic objects placed in the vicinity of the antenna will have a great effect on communication performance. As far as possible, ensure that the equipment is placed well away from metallic objects. - The GND for the radio module will also affect communication performance. If possible, ensure that the case GND and the circuit GND are connected to a large GND pattern. ## **Warnings** - Do not take a part or modify the equipment. - Do not remove the product label (the label attached to the upper surface of the module.) Using a module from which the label has been removed is prohibited. Copyright 2019, Circuit Design, Inc. # **REVISION HISTORY** | Version | Date | Description | Remark | |---------|-----------|---|--------| | 1.0 | May 2018 | The first issue | | | 1.1 | Mar. 2019 | Review of the notes about specification | | | | | values | |